ADUSUMILLI GOPALAKRISHNAIAH & SUGARCANE GROWERS
SIDDHARTHA DEGREE COLLEGE OF ARTS & SCIENCE
Vuyvuru-521 165, Knishna Distriet, Andhra Pradesh
An Autonomous College in the Jurisdiction of Krishna University
Accredited by NAAC with “A” Grade

)

NanG

DEPARTEMENT OF
COMPUTER SCIENCE

VAD CO DI RNINC
VAD CODE: DLVA Deep
DL
[.
&
.€arning
Deep learning is a mach
echnique that teact
do what comes naturally
learn by exa
won
]| i P}
. 5 one;
S 08676-233267
Email:
agsgsiddhartha@gmail.com
Address:

Door No 2.391

Complex, Vuyyuru-521165

A.G. & S.G. Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh
(Managed by: Siddhartha Academy of General & Technical Education,
Vijayawada-10)
An Autonomous College in the Jurisdiction of Krishna University
Accredited by NAAC with “A” Grade 1SO 9001:2015 Certified Institution

Rm

40
m
®
A
m
(@)
=
»

2/

N3IJS 8 S1¥V 40

VUYYURU

ﬁ_e. & S.G. SIDDHA
X

*

S5

DEPARTMENT OF COMPUTER SCIENCE

Value Added Course
Title: Deep Learning

Name of the Lecturer : Teja Sri. Oleti

Class : IT MSCS
Duration of the Course: 30 HOURS
VAC Code : DLVACO01

A.G. & S.G. Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh

Value Added Course

Title: Deep Learning

Objectives: 1) Deep learning eliminates some of data
Pre-processing that is typically involved
With machine learning.
2) Discuss the terminology used
3) These algorithms can be ingest and process
Unstructured data like text and images

Methodology: Teacher - Cantered method

Duration: 30 Hours

A.G. & S.G. Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh

Date : From

Value Added Course

Title: Deep Learning

to

Date

Content

Module No.

15-03-2023

Deep learning environment
over view of deep learning , deep learning
environment setup locally — installing tensor flow ,
installing keras , run tensor flow program on aws
cloud platform

29-03-2023

Introduction to neural network
What is neural network , how neural networks work ,
gradient descent , perceptron , multilayer perceptron ,
back propagation

5-04-2023

Tensor flow basics
Placeholders in tensor flow-defining placeholders ,
feeding placeholders with data , variables , constants ,
computation graph

19-04-2023

Activation functions
What are the activation functions , sigmoid functions ,

hyperbolic tangent function , Relu- rectified linear
units , softmax function

N A A 2 T = e A T

TR

A.G. & S.G. Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh

Value Added Course
Student Enrolment Sheet

Class: 11 Bs.c(MSCS)

'_S. No Roll No. Name of the Student Signature
1 2155301 K(rishnavarapu Dharanisri ~ KM gﬁ
2 2155302 Ghantasala Divya & Divga
3 2155303 Mopidevi Sri Lakshmi M &2 \ols \Auﬁ
4 2155304 Singavarapu Sai Sowmya - Sal g0 ODM%
5 2155305 Arikatla Susanth A swoaxth
6 2155306 Bathina Manoj Phanindra & - Manoj @ lanidve

7 2155307 Jampana Keerthi Priya —a_w [eﬁ Y“r‘hﬁ,fg?ﬂh

8 2155308 Konatham Alekhya b, g siluag‘

9 2155309 Kondaraju Ajith Kumar . A Rumast

10 | 2155310 Nakka Anusha Bl Ak,

11| 2155311 Akula Chakradhar A - chol Vadhas
12 2155312 Mohammad Khadeera begum t4. & begum

13 | 2155313 Bandela Pavan Kumar 1 " wer bomgs
14 | 2155314 JYonna Jhansi Lakshmi Fowma 1@13

15 2155315 ¢ Kunapareddy Tulasi){ To [fw‘

= w%m“mm“hu_-_"“m.m“m‘ I E———

LR Lo]

5. No Rudl N, Name of the Student Signature

16 2155316 Peddiboyina Hinasri P 5 ety

17 2155317 Katta Naga Soavani J e G peacsmed

18 2155318 Valluri Shainy allawi ghai i
_n'l 2155319 Manikonds Karuna Sri }'_J_,f i CE“

20 2155320 Pechmanabhui Phani Supeia | B, et aprado.

21 2135321 Kunapareddy Hene sri !:'-‘l"iﬂﬁ"lﬂq"_d: w7 B

2 2135322 Reddy Durgn Bhavani R dusng s dewopy

bE 2155323 Divkcku Naga Glreesha 0. Ao cnfrveRha, |

24 2155324 Neruss Magn Mous ika Moo e0un b

25 2155325 Gariparthi Dedeepya G, DedeaPH0 -

i 2155326 Edupuganti Joshiman E . Joshman

a7 2155927 Gangisetty Yusa Kiran G ‘imm. h!.‘w:

2 2155328 Veerts Sri Lakshmi Wb Laderhed

20 1155329 Mamidi Chaitanyn : M. f'knﬂiii;__-

10 2155330 Rachuri Babby ¥ bobef

31 2155331 Petesi Praneeth Kumar P Praneell Fumew

32 2155332 Mohammad Abrar Ahamed D Abvrrthmd

33 2155333 Gariparthi Harikn Ly Bty

34 3184334 Vinnakota Deepthi - DeeptH ’

DEEP LEARNING
Deep learning environment:

Over view of deep learning:

What is the overview of deep learning?

Deep learning is a subfield of machine learning that deals with algorithms inspired by the
structure and function of the brain. Deep learning is a subset of machine learning, which is a
part of artificial intelligence (Al). Artificial intelligence is the ability of a machine to imitate
intelligent human behaviour.

Why is deep learning important?

Artificial intelligence (Al) attempts to train computers to think and learn as humans do. Deep
learning technology drives many Al applications used in everyday products, such as the
following:

o Digital assistants

e Voice-activated television remotes
e Fraud detection

e Automatic facial recognition

It is also a critical component of emerging technologies such as self-driving cars, virtual reality,
and more.

Deep learning models are computer files that data scientists have trained to perform tasks using an
algorithm or a predefined set of steps. Businesses use deep learning models to analyze data and
make predictions in various applications.

What are the uses of deep learning?

Deep learning has several use cases in automotive, aerospace, manufacturing, electronics,
medical research, and other fields. These are some examples of deep learning:

e Self-driving cars use deep learning models to automatically detect road signs and pedestrians.
o Defence systems use deep learning to automatically flag areas of interest in satellite images.

e Medical image analysis uses deep learning to automatically detect cancer cells for medical
diagnosis.

o Factories use deep learning applications to automatically detect when people or objects are
within an unsafe distance of machines.

You can group these various use cases of deep learning into four broad categories—computer
vision, speech recognition, natural language processing (NLP), and recommendation engines.

Computer vision
Computer vision is the computer's ability to extract information and insights from images and
videos. Computers can use deep learning techniques to comprehend images in the same way that
humans do. Computer vision has several applications, such as the following:
o Content moderation to automatically remove unsafe or inappropriate content from image
and video archives
« Facial recognition to identify faces and recognize attributes like open eyes, glasses, and
facial hair
o Image classification to identify brand logos, clothing, safety gear, and other image details
Speech recognition
Deep learning models can analyze human speech despite varying speech patterns, pitch, tone,
language, and accent. Virtual assistants such as Amazon Alexa and automatic transcription
software use speech recognition to do the following tasks:
o Assist call center agents and automatically classify calls.
e Convert clinical conversations into documentation in real time.
o Accurately subtitle videos and meeting recordings for a wider content reach.
Natural language processing
Computers use deep learning algorithms to gather insights and meaning from text data and
documents. This ability to process natural, human-created text has several use cases, including
in these functions:
o Automated virtual agents and chatbots
e Automatic summarization of documents or news articles
« Business intelligence analysis of long-form documents, such as emails and forms
o Indexing of key phrases that indicate sentiment, such as positive and negative comments on
social media
Recommendation engines
Applications can use deep learning methods to track user activity and develop personalized
recommendations. They can analyze the behavior of various users and help them discover new
products or services. For example, many media and entertainment companies, such as Netflix,
Fox, and Peacock, use deep learning to give personalized video recommendations.

Deep learning environment setup locally — installing tensorflow
HOWTO: Install Tensorflow locally:
This documentation describes how to install tensorflow package locally in your $HOME
space.
Load python module
module load python/3.6-conda5.2

Clone python installation to local directory
Three alternative create commands are listed. These cover the most common cases:
conda create -n local --clone="$PYTHON_HOME"

This will clone the entire python installation to ~/envs/local directory. The process will take
several minutes.

conda create -n local

This will create a local python installation without any packages. If you need a small number
of packages, you may choose this option.

https://aws.amazon.com/computer-vision/
https://aws.amazon.com/what-is/speech-to-text/
https://aws.amazon.com/what-is/speech-to-text/
https://aws.amazon.com/comprehend/
https://aws.amazon.com/mxnet/
https://aws.amazon.com/mxnet/
https://aws.amazon.com/media/

conda create -n local python={version} anaconda

If you like to install a specific version of python, you can specify it with "python" option. For
example, you can use "python=3.6" for version 3.6.

To verify that a clone has been created, use the command

conda info -e

For additional conda command documentation see https://conda.io/docs/commands.html

Activate clone environment

For the bash shell:

source activate local

On newer versions of Anaconda on the Owens cluster you may also need to perform the
removal of the following packages before trying to install your specific packages:
conda remove conda-build

conda remove conda-env

Install package

Install the latest version of tensorflow that is gpu compatible.

pip install tensorflow-gpu

If there are errors on this step you will need to resolve them before continuing.

Test python package

Now we will test tensorflow package by loading it in python and checking its location to
ensure we are using the correct version.

python -c "import tensorflow;print (tensorflow.__file)"

Output:

$HOME/.conda/envs/local/lib/python2.7/site-packages/tensorflow/__init__.py
Remember, you will need to load the proper version of python before you go to use your
newly installed package. Packages are only installed to one version of python.

Install your own python modules

If the method using conda above is not working or if you prefer, you can consider installing
python modules from the source. Please read HOWTO: install your own python modules.
Keras Installation and Environment Setup:

Keras is one of the most popular Python libraries. It is having high demand these days as it is
straight-forward and simple. It is a high-level API that does not perform low-level
computations. Keras runs on the TensorFlow and Theano.

It is handy for Deep Learning and focuses on the idea of Models. Keras is an open-source
Python library. It is very easy and effortless to download. It is easily and freely available.
You can download Keras with no efforts.

Let us learn Keras installation in easy steps.
Keras Installation and Environment setup

Step 1: Install Python

It is the primary task to install Python in your system. Python is an open-source language. It

is easily available. Download Python now.

https://conda.io/docs/commands.html
https://www.osc.edu/resources/getting_started/howto/howto_install_your_own_python_modules
https://www.python.org/downloads/windows/

© @ python.org/downloads/windows/)W Gy o @

Python

e python” . I

About Downloads Documentation Community Success Stories News Events

Python »> Downloads > Windows

Python Releases for Windows

atest Python 3 Release - Python 3.8.2

= Latest Python 2 Release - Python 2.7.18

sython 3.8.3rc1 - April 29, 2020

Note that Python 3.8.3rc1 cannot be used on Windows XP or eartier.

x86-64 embeddable zIp file

- D aller

Click on Latest Python 3 Release — Python 3.8.2. This link will help you to download the
latest version of Python.

Step 2: Now, Open the Command Prompt

In this step, open the command prompt. Run the command prompt as an administrator.

FFind -
AaBbC AaBbcer AQB assbect agabecod T
b 5 | | 25 Replace
Apps Documents ‘Web a o~
PP Heading1 Heading 2 Title Subtitle Subtle Em... 7 b) Select~
— Styles 5 Editing
- Command Prompt
App
Search the web
Command Prompt
£ command - See web results > App
Settings (7+) [y .
Open k will help you to
CO Run as administrator
i} Open file location
B Unpin from taskbar
= pin to Start
Page 2 { E B - 1

Running the command prompt as an administrator will enable you to make changes in your
system. It will ask you permission to make changes to your system. So, give it permission by

pressing the “Yes’ button.
Step 3: Now, type ‘pip’ in Command Prompt

Type ‘pip’ as a command in the command prompt. It will help you to check whether Python
is installed or not.

https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2020/09/Screenshot-35711.png
https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2020/09/Screenshot-35811.png

After typing ‘pip’ in the command prompt, you will see many functions executing. Wait, till
the functions execute.

Advertisement

comp.
help

Step 4: Write ‘pip install tensorflow—1.8 in Command Prompt
Being the fact that Keras runs on the top of Keras. You need to install TensorFlow first.

https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2020/09/Screenshot-35111.png
https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2020/09/Screenshot-35211.png

After typing this command, you will see many functions executing. Tensorboard,
termcolor, numpy, wheel, etc are the functions that will be executed. You can many

commands and functions executing in the image below.

1

Step 5: Write ‘pip install keras’ on Command Prompt

Now, it’s time to finally install Keras. After writing ‘pip install keras’, you will see prompt

collecting many files.

https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2020/09/Screenshot-35311.png
https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2020/09/Screenshot-359.png

Sm-win_amd64.uhl (34.4

You will see that it is automatically ignoring the functions are that not much necessary. It is
very easy to install Keras. It will automatically install all the secondary files it needs.

After writing this command, wait for it to execute completely. Once it is done, you have
successfully installed Keras. Now, you can easily work with the Keras code. Write the Keras
commands easily and safely. Enjoy working with Keras.

Conclusion

This is how Keras installation is done. Keras is an open-source Python library. It is easy to
install Keras. As Keras runs on the top of TensorFlow, Theano. You have to install any of
these libraries first.

Here, you can see TensorFlow. After installing TensorFlow, you can install Keras. It is not a
burden to install Keras. It is not too time-consuming. You can easily and quickly install it.
Run tensor flow program on aws cloud plateform:

Getting Started with TensorFlow on AWS

PAGE CONTENT

Amazon SageMakerAWS Deep Learning AMIAWS Deep Learning ContainersAmazon EC2
infl instances/ AWS InferentiaAmazon Elastic Inference

Amazon SageMaker

The easiest way to get started with TensorFlow on AWS is using Amazon SageMaker, a fully
managed service that provides every developer and data scientist with the ability to build,
train, and deploy TensorFlow models quickly. SageMaker assists with each step of the
machine learning process to make it easier to develop high quality models. Data scientists can
also use SageMaker with TensorBoard to save development time by visualizing the model
architecture to identify and remediate convergence issues, such as validation loss not
converging or vanishing gradients. To get started with TensorFlow and TensorBoard on
SageMaker, use the following resources:

Use TensorFlow with SageMaker documentation

SageMaker with TensorBoard documentation

PyTorch in the SageMaker Python SDK

SageMaker TensorFlow container

SageMaker TensorFlow serving container
TensorFlow in SageMaker Workshop

https://aws.amazon.com/tensorflow/getting-started/#Amazon_SageMaker
https://aws.amazon.com/tensorflow/getting-started/#Amazon_SageMaker
https://aws.amazon.com/tensorflow/getting-started/#AWS_Deep_Learning_Containers
https://aws.amazon.com/tensorflow/getting-started/#AWS_Deep_Learning_Containers
https://aws.amazon.com/tensorflow/getting-started/#Amazon_EC2_Inf1_instances.2F_AWS_Inferentia
https://aws.amazon.com/tensorflow/getting-started/#Amazon_EC2_Inf1_instances.2F_AWS_Inferentia
https://docs.aws.amazon.com/sagemaker/latest/dg/tf.html
http://dev-dsk-cmiyoung-2a-c844f850.us-west-2.amazon.com/sagemaker/AWSIronmanApiDoc/integ/cmiyoung-tornasole/latest/dg/tensorboard-on-sagemaker.html
https://sagemaker.readthedocs.io/en/stable/index.html#pytorch
https://github.com/aws/sagemaker-tensorflow-training-toolkit
https://github.com/aws/sagemaker-tensorflow-serving-container
https://github.com/aws-samples/TensorFlow-in-SageMaker-workshop
https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2020/09/Screenshot-35511.png

« Extending containers

AWS Deep Learning AMI
AWS Deep Learning AMIs are machine images pre-installed with TensorFlow, allowing you to
quickly experiment with new algorithms or learn new skills and techniques. To get started, see
the TensorFlow on AWS Deep Learning AMIs tutorials below.
e TensorFlow
e TensorFlow 2
e TensorFlow with Horovod
e TensorFlow 2 with Horovod

AWS Deep Learning Containers
AWS Deep Learning Containers are Docker images pre-installed with TensorFlow to make it
easy to deploy custom machine learning environments quickly by letting you skip the
complicated process of building and optimizing your environments from scratch. To get started
with TensorFlow on AWS DL Containers, use the following resources:
e TensorFlow on Amazon EC2: Training | Inference
e TensorFlow on Amazon ECS: Training | Inference
o TensorFlow on Amazon EKS: Training | Distributed Training | CPU Inference | GPU

Inference

Amazon EC2 Infl instances/ AWS Inferentia
Amazon EC2 Infl instances are built from the ground up to support machine learning inference
applications. Infl instances feature up to 16 AWS Inferentia chips, high-performance machine
learning inference chips designed and built by AWS. Infl instances deliver up to 3x higher
throughput and up to 40% lower cost per inference than Amazon EC2 G4 instances, which were
already the lowest cost instance for machine learning inference available in the cloud. Using
Infl instances, you can run large scale machine learning inference with TensorFlow models at
the lowest cost in the cloud. To get started, see our tutorial on running TensorFlow models on
Infl.

Amazon Elastic Inference
Amazon Elastic Inference allows you to attach low-cost GPU-powered acceleration to Amazon
EC2 and SageMaker instances or Amazon ECS tasks, to reduce the cost of running inference
with PyTorch models by up to 75%. To get started with TensorFlow on Elastic Inference, see
the following resources.

UNIT-I1I

Introduction to neural network
What is neural network:
A neural network is a method in artificial intelligence that teaches computers to process data in
a way that is inspired by the human brain. It is a type of machine learning process, called deep
learning, that uses interconnected nodes or neurons in a layered structure that resembles the
human brain. It creates an adaptive system that computers use to learn from their mistakes and
improve continuously. Thus, artificial neural networks attempt to solve complicated problems,
like summarizing documents or recognizing faces, with greater accuracy.

Why are neural networks important?
Neural networks can help computers make intelligent decisions with limited human assistance.
This is because they can learn and model the relationships between input and output data that are
nonlinear and complex. For instance, they can do the following tasks.

Make generalizations and inferences
Neural networks can comprehend unstructured data and make general observations without
explicit training. For instance, they can recognize that two different input sentences have a
similar meaning:

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/tensorflow_bring_your_own
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-tensorflow.html
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-tensorflow-2.html
https://docs.aws.amazon.com/dlami/latest/devguide/activate-horovod.html
https://docs.aws.amazon.com/dlami/latest/devguide/activate-horovod-2.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-ec2-tutorials-training.html#deep-learning-containers-ec2-tutorials-training-tf
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-ec2-tutorials-inference.html#deep-learning-containers-ec2-tutorials-inference-tf
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-ecs-tutorials-training.html#deep-learning-containers-ecs-tutorials-training-tf
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-ecs-tutorials-inference.html#deep-learning-containers-ecs-tutorials-inference-tf
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-eks-tutorials-gpu-training.html#deep-learning-containers-eks-tutorials-gpu-training-tf
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-eks-tutorials-distributed-gpu-training.html#deep-learning-containers-eks-tutorials-distributed-gpu-training-tf
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-eks-tutorials-cpu-inference.html#deep-learning-containers-eks-tutorials-cpu-inference-tf
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-eks-tutorials-gpu-inference.html#deep-learning-containers-eks-tutorials-gpu-inference-tf
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-eks-tutorials-gpu-inference.html#deep-learning-containers-eks-tutorials-gpu-inference-tf
https://aws.amazon.com/machine-learning/inferentia/
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-inferentia-tf-neuron.html
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-inferentia-tf-neuron.html

e Can you tell me how to make the payment?
e How do I transfer money?
A neural network would know that both sentences mean the same thing. Or it would be able
to broadly recognize that Baxter Road is a place, but Baxter Smith is a person’s name.

How neural networks work:
What is a neural network?
Simply said, a neural network is a set of algorithms designed to recognize patterns or
relationships in a given dataset. These deep neural networks are basically computing systems
designed to mimic how the human brain analyzes and processes information.
A neural network consists of neurons interconnected like a web and these neurons are
mathematical functions or models that do the computations required for classification according
to a given set of rules. Through this tutorial, let’s discuss how these artificial neural networks
work and their real-world usage.

How does a neural network learn?
Before moving on to learn how exactly the neural network works, you need to know what forms
a neural network. A normal neural network consists of multiple layers called the input layer,
output layer, and hidden layers. In each layer every node (neuron) is connected to all nodes
(neurons) in the next layer with parameters called ‘weights’. .
Neural networks consist of nodes called perceptrons that do necessary calculations and detect
features of neural networks. These perceptrons try to reduce the final cost error by adjusting the
weights parameters. Moreover, a perceptron can be considered as a neural network with a single

layer.
On the other hand, multilayer perceptrons are called deep neural networks. The perceptrons are
activated when there is satisfiable input. Go through this if you need to learn more

about perceptrons.
Now let’s move on to discuss the exact steps of a working neural network.

1. Initially, the dataset should be fed into the input layer which will then flow to the
hidden layer.

2. The connections which exist between the two layers randomly assign weights to the
input.

3. A bias is added to each input. Bias is a constant which is used in the model to fit best
for the given data.

4. The weighted sum of all the inputs will be sent to a function that is used to decide the
active status of a neuron by calculating the weighted sum and adding the bias. This
function is called the activation function.

5. The nodes that are required to fire for feature extraction are decided based on the
output value of the activation function.

6. The final output of the network is then compared to the required labeled data of our
dataset to calculate the final cost error. The cost error is actually telling us how ‘bad’
our network is. Hence we want the error to be as smallest as we can.

7. The weights are adjusted through back propagation, which reduces the error. This
back propagation process can be considered as the central mechanism that neural
networks learn. It basically fine-tunes the weights of the deep neural network in order
to reduce the cost value.

In simple terms, what we do when training a neural network is usually calculating the loss
(error value) of the model and checking if it is reduced or not. If the error is higher than the
expected value, we have to update the model parameters, such as weights and bias values. We
can use the model once the loss is lower than the expected error margin.

Neural network visualization

https://en.wikipedia.org/wiki/Perceptron

Qutput layer

Input Layer
N Ny
Hidden Layers

Neural networks can be described easily using the above diagram. The light blue circles
represent the perceptrons we discussed earlier, and the lines represent connections between
artificial neurons.

When considering one perceptron, its job can be visualized as follows.

. Cutput

N

Inputs Weights Weighted sum Activation function

When you input the data with random weights to the model, it generates the weighted sum of
them. According to that value, the activation function decides the activation status of the
neuron. The output of this perceptron may act as an input for the next neuron layer.

Gradient descent :

Gradient descent is an optimization algorithm which is commonly-used to train machine
learning models and neural networks. Training data helps these models learn over time, and
the cost function within gradient descent specifically acts as a barometer, gauging its
accuracy with each iteration of parameter updates. Until the function is close to or equal to
zero, the model will continue to adjust its parameters to yield the smallest possible error.
Once machine learning models are optimized for accuracy, they can be powerful tools for
artificial intelligence (Al) and computer science applications.

Perceptron:

A perceptron is the smallest element of a neural network. Perceptron is a single-layer neural
network linear or a Machine Learning algorithm used for supervised learning of various
binary classifiers. It works as an artificial neuron to perform computations by learning
elements and processing them for detecting the business intelligence and capabilities of the
input data. A perceptron network is a group of simple logical statements that come together to
create an array of complex logical statements, known as the neural network.

https://www.ibm.com/topics/machine-learning
https://www.ibm.com/topics/machine-learning
https://www.ibm.com/topics/neural-networks
https://www.analytixlabs.co.in/blog/fundamentals-of-neural-networks/
https://www.hotelmize.com/wp-content/uploads/2021/04/How-does-a-neural-network-works.png
https://www.hotelmize.com/wp-content/uploads/2021/04/perceptron.png

UNIT-3
Tensor flow basics:

Placeholders are Tensor-like objects. They are a contract between you and TensorFlow that
says when you run your computation graph in a session, you will supply or feed data into that
placeholder so that your graph can run successfully.
They are Tensor-like objects as they behave like Tensors, meaning you can pass them around
in places where you would put a Tensor.
By using placeholders, we can supply external inputs into our graph that might change each
time we run our graph. The natural use for them is as a way to supply data and labels into
our model as the data and labels we supply will generally be different each time we want to
run our graph.
When creating a placeholder, we must supply the datatype that will be fed.
We will use two placeholders to supply data and labels into our graph. We also supply the
shape that any data fed into these placeholders must take. We use None to indicate the size of
that particular dimension can take any value. This way we are able to feed in batches of data
that are varying sizes. Following we'll see how to define placeholders in TensorFlow for our
problem.

x = tf.placeholder(tf.float32, shape=[None, 4], name="data_in")

y = tf.placeholder(tf.int32, shape=[None, 3], name="target labels")

Copy
Now, we have created placeholders in our graph, so we can construct our linear model on the

graph as well. We call our function that we defined previously, and supply as input our data
placeholder, x. Remember, placeholders act like Tensors so they can be passed around like
them as well. In the following code we call our linear_model function with our placeholder as
the input argument.

model_out = linear_model(x)
Copy

When we call our function, everything inside it executes and all the ops and variables are
added to our TensorFlow graph. We only need to do this once; if we were to try calling our
function again, we would get an error saying that we have tried to add variables to the graph
but they already exist.

Placeholders are the simplest and quickest way of supplying external data into our graph, so
it's good to know about them. Later on, we will see better ways of supplying data using the
dataset API, but for now placeholders are a good place to start.

Variables:

A TensorFlow variable is the recommended way to represent shared, persistent state your
program manipulates. This guide covers how to create, update, and manage instances

of tf.Variable in TensorFlow.

Variables are created and tracked via the tf.Variable class. A tf.Variable represents a tensor
whose value can be changed by running ops on it. Specific ops allow you to read and modify
the values of this tensor. Higher level libraries like tf.keras use tf.Variable to store model
parameters.

Constants:

A TensorFlow variable is the recommended way to represent shared, persistent state your
program manipulates. This guide covers how to create, update, and manage instances

of tf.Variable in TensorFlow.

Variables are created and tracked via the tf.Variable class. A tf.Variable represents a tensor
whose value can be changed by running ops on it. Specific ops allow you to read and modify

https://www.tensorflow.org/api_docs/python/tf/Variable
https://www.tensorflow.org/api_docs/python/tf/Variable
https://www.tensorflow.org/api_docs/python/tf/Variable
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/Variable
https://www.tensorflow.org/api_docs/python/tf/Variable
https://www.tensorflow.org/api_docs/python/tf/Variable
https://www.tensorflow.org/api_docs/python/tf/Variable

the values of this tensor. Higher level libraries like tf.keras use tf.Variable to store model
parameters.

UNIT-4
Activation functions:
What are the activation function:
The activation functions are at the very core of Deep Learning. They determine the output of a
model, its accuracy, and computational efficiency. In some cases, activation functions have a
major effect on the model’s ability to converge and the convergence speed.
In this article, you’ll learn the following most popular activation functions in Deep Learning
and how to use them with Keras and TensorFlow 2.
Sigmoid (Logistic)
Hyperbolic Tangent (Tanh)
Rectified Linear Unit (ReLU)
Leaky ReLU
Parametric Leaky ReLU (PReLU)
Exponential Linear Units (ELU)
. Scaled Exponential Linear Unit (SELU)
1. Sigmoid (Logistic)
The Sigmoid function (also known as the Logistic function) is one of the most widely used
activation function. The function is defined as:

1
€T) —
o(z) 14+ e *

Sigmoid activation function (Image by author)
The plot of the function and its derivative.

NookrwbdpE

i Sigmoid activation function 5 Derivative
10 -1 10 1
0.8 0.8 4
06 06 1
04 04 4
02 02 /\
00 0.0
-0.2 . ; . ; : -02 1 — ;
] —4 =2 0 2 4 [-6 -4 -2 0 2 4 6

the plot of Sigmoid function and its derivative (Image by author)

As we can see in the plot above,

e The function is a common S-shaped curve.

e The output of the function is cantered at 0.5 with a range from 0 to 1.

e The function is differentiable. That means we can find the slope of the sigmoid curve at
any two points.

e The function is monotonic but the function’s derivative is not.

The Sigmoid function was introduced to Artificial Neural Networks (ANN) in the 1990s to

replace the Step function [2]. It was a key change to ANN architecture because

https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/Variable

the Step function doesn’t have any gradient to work with Gradient Descent, while

the Sigmoid function has a well-defined nonzero derivative everywhere, allowing Gradient

Descent to make some progress at every step during training.

Problems with Sigmoid activation function

The main problems with the Sigmoid function are:

1. Vanishing gradient: looking at the function plot, you can see that when inputs become
small or large, the function saturates at O or 1, with a derivative extremely close to 0. Thus
it has almost no gradient to propagate back through the network, so there is almost nothing
left for lower layers [2].

2. Computationally expensive: the function has an exponential operation.

3. The output is not zero centered:

How to use it with Keras and TensorFlow 2

To use the Sigmoid activation function with Keras and TensorFlow 2, we can simply

pass 'sigmoid' to the argument activation :

from tensorflow.keras.layers import DenseDense(10, activation="sigmoid")

To apply the function for some constant inputs:

import tensorflow as tf

from tensorflow.keras.activations import sigmoidz = tf.constant([-20, -1, 0, 1.2], dtype=tf.float32)

output = sigmoid(z)

output.numpy()

2. Hyperbolic Tangent (Tanh)

Another very popular and widely used activation function is the Hyperbolic Tangent, also

known as Tanh. It is defined as:

et —e ”

et +e 7

tanh function (image by author)
The plot of the function and its derivative:

tanh(x)

Tanh activation function Derivative
B e 10
05 - 05
0.0 0.0
-0.5 1 -0.5
1 [r—— e -1.0
-4 -2 0 2 H -4 -2 0 2 4

The plot of tanh and its derivative (image by author)

We can see that the function is very similar to the Sigmoid function.

e The function is a common S-shaped curve as well.

o The difference is that the output of Tanh is zero centered with a range from -
1to 1 (instead of 0 to 1 in the case of the Sigmoid function)

e The same as the Sigmoid, this function is differentiable

e The same as the Sigmoid, the function is monotonic, but the function’s derivative is not.

Tanh has characteristics similar to Sigmoid that can work with Gradient Descent. One

important point to mention is that Tanh tends to make each layer’s output more or less

centered around 0 and this often helps speed up convergence [2].

Problems with Tanh activation function

Since Tanh has characteristics similar to Sigmoid, it also faces the following two problems:

1. Vanishing gradient: looking at the function plot, you can see that when inputs become
small or large, the function saturates at -1 or 1, with a derivative extremely close to 0.
Thus it has almost no gradient to propagate back through the network, so there is almost
nothing left for lower layers.

2. Computationally expensive: the function has an exponential operation.

How to use Tanh with Keras and TensorFlow 2

To use the Tanh, we can simply pass 'tanh’ to the argument activation:

from tensorflow.keras.layers import DenseDense(10, activation="tanh")

To apply the function for some constant inputs:

import tensorflow as tf

from tensorflow.keras.activations import tanhz = tf.constant([-20, -1, 0, 1.2], dtype=tf.float32)
output = tanh(z)

output.numpy()

3. Rectified Linear Unit (ReL.U)

The Rectified Linear Unit (ReLU) is the most commonly used activation function in deep
learning. The function returns 0 if the input is negative, but for any positive input, it returns
that value back. The function is defined as:

0 ifz<0
r ifx >0

ReLU function (image by author)
The plot of the function and its derivative:

. RelLU activation function : Derivative
4 4
3 3]
2 2
1 1
0 0
o 5 0 2 4 4 -2 0 2

The plot of ReLU and its derivative

As we can see that:

o Graphically, the ReLU function is composed of two linear pieces to account for non-
linearities. A function is non-linear if the slope isn’t constant. So, the ReLU function is

non-linear around 0, but the slope is always either O (for negative inputs) or 1 (for positive
inputs).

o The ReLU function is continuous, but it is not differentiable because its derivative is 0
for any negative input.

e The output of ReLU does not have a maximum value (It is not saturated) and this helps
Gradient Descent

e The function is very fast to compute (Compare to Sigmoid and Tanh)

It’s surprising that such a simple function works very well in deep neural networks.

Problem with ReLU

ReLU works great in most applications, but it is not perfect. It suffers from a problem known

as the dying ReLU.

Dying ReLU

During training, some neurons effectively die, meaning they stop outputting anything other

than 0. In some cases, you may find that half of your network’s neurons are dead, especially if

you used a large learning rate. A neuron dies when its weights get tweaked in such a way that

the weighted sum of its inputs are negative for all instances in the training set. When this

happens, it just keeps outputting Os, and gradient descent does not affect it anymore since the

gradient of the ReLU function is O when its input is negative.

How to use it with Keras and TensorFlow 2

To use ReLLU with Keras and TensorFlow 2, just set activation="relu’

from tensorflow.keras.layers import DenseDense(10, activation="relu")

To apply the function for some constant inputs:

import tensorflow as tf

from tensorflow.keras.activations import reluz = tf.constant([-20, -1, 0, 1.2], dtype=tf.float32)
output = relu(z)

output.numpy()

4. Leaky RelLLU

Leaky ReL U is an improvement over the ReLU activation function. It has all properties of
ReLU, plus it will never have dying ReLLU problem. Leaky ReLU is defined as:

f(X) = max(ax, X)

The hyperparameter o defines how much the function leaks.

It is the slope of the function for x < 0 and is typically set to 0.01. The small slope ensures that
Leaky ReLU never dies.

Leaky RelLU activation function - Derivative
10 1
15
08
10
06
05 il
+ ’—_’_'___,_’—’-'-‘-_'— 0.21
00
0.5 1 T T r T T T T
-4 -2 0 2 4 -4 -2 0 2 4

How to use Leaky RelL.U with Keras and TensorFlow 2
To use the Leaky ReL.U activation function, you must create a LeakyReL U instance like
below:

from tensorflow.keras.layers import LeakyReL U, Denseleaky relu = LeakyRelL U(alpha=0.01)
Dense(10, activation=leaky_relu)

5. Parametric leaky ReLU (PReLU)

Parametric leaky ReLU (PReLU) is a variation of Leaky ReLU, where « is authorized to be
learned during training (instead of being a hyperparameter, it becomes a parameter that can be
modified by back propagation like any other parameters). This was reported to strongly
outperform ReLU on large image datasets, but on smaller datasets it runs the risk of over
fitting the training set [2].

How to use PReLLU with Keras and TensorFlow 2

To use Parametric leaky ReLU, you must create a PReLU instance like below:

from tensorflow.keras.layers import PReLU, Densepara_relu = PReLLU()

Dense(10, activation=para_relu)

6. Exponential Linear Unit (ELU)

Exponential Linear Unit (ELU) is a variation of ReLU with a better output for z < 0. The
function is defined as:

ae® —1) ifz <0
x ifx >0

ELU function

The hyperparameter o controls the value to which an ELU saturates for negative net inputs.
The plot of the function and its derivative:

ELU activation function Derivative

3 3

2 2

1 1

0 0 =
_] ——— L e m e ———————— _l
=2 -2

-4 =2 0 2 4 -4 =2] 2 4

The plot of ELU and its derivative (image by author)

We can see in the plot above,

e ELU modified the slope of the negative part of the function.

e Unlike the Leaky ReLLU and PReL.U functions, instead of a straight line, ELU uses a log
curve for the negative values.

According to the authors, ELU outperformed all the ReL.U variants in their experiments [3].

Problem with ELU

According to [2, 3], the main drawback of the ELU activation is that it is slower to compute

than the ReL.U and its variants (due to the use of the exponential function), but during training

this is compensated by the faster convergence rate. However, at test time, an ELU network
will be slower than a ReLU network.
How to use it with Keras and TensorFlow 2
Implementing ELU in TensorFlow 2 is trivial, just specify the activation function when
building each layer:
Dense(10, activation="elu")
To apply the function for some constant inputs:
import tensorflow as tf
from tensorflow.keras.activations import eluz = tf.constant([-20, -1, 0, 1.2], dtype=tf.float32)
output = elu(z, alpha=1)
output.numpy()
7. Scaled Exponential Linear Unit (SELU)
Exponential Linear Unit (SELU) activation function is another variation of ReLU proposed
by Guinter Klambauer et al. [4] in 2017. The authors showed that if you build a neural network
composed exclusively of a stack of dense layers, and if all hidden layers use
the SELU activation function, then the network will self-normalize (the output of each layer
will tend to preserve mean 0 and standard deviation 1 during training, which resolves the
vanishing/exploding gradients problem). This activation function often outperforms other
activation functions very significantly.
SELU is defined as:
f(x) = scale * x ,2>0

=scale* o * (exp(x) -1) ,z<=0
where « and scale are pre-defined constants («a=1.67326324 and scale=1.05070098).
The plot of SELU and its derivative:

SELU activation function Derivative
3 3
2 2
1 1
0 o
-1 -1
ot -2
) -2 0 2 4 -4 -2 0 2 4

sigmoid functions:

TensorFlow is open-source Python library designed by Google to develop Machine
Learning models and deep learning neural networks.

sigmoid() is used to find element wise sigmoid of x.

Syntax: tensorflow.math.sigmoid(x, name)

Parameters:

e X It's atensor. Allowed dtypes are floatl6, float32, float64, complex64, or complex128.
e name(optional): It defines the name for the operation.

Return: It return a tensor of same dtype as x.

Example 1:
Python3

importing the library
import tensorflow as tf

Initializing the input tensor
a = tf.constant([.2, .5, .7, 1, 2, 5, 10], dtype = tf.float64)

Printing the input tensor
print(‘a: ', a)

Calculating result
res = tf.math.sigmoid(x = a)

Printing the result
print('Result: ', res)

Output:

a: tf.Tensor([0.2 0.5 0.7 1. 2. 5. 10.], shape=(7,), dtype=float64)

Result: tf.Tensor(

[0.549834 0.62245933 0.66818777 0.73105858 0.88079708 0.99330715
0.9999546], shape=(7,), dtype=float64)

Relu- rectified linear units:

Introduction

The Rectified Linear Unit is the most commonly used activation function in deep learning
models. The function returns O if it receives any negative input, but for any positive
value x€p it returns that value back. So it can be written

as f(x)=max(0,x) (@)= @€ (0.9).

Graphically it looks like this
0}

6F /

-l: /
/

L
»/
L

1 " " " " L " " " " " " " " 1 " i " " 1

-10 -5 5 10

It's surprising that such a simple function (and one composed of two linear pieces) can allow
your model to account for non-linearities and interactions so well. But the ReLLU function
works great in most applications, and it is very widely used as a result.

Why It Works

Introducing Interactions and Non-linearities

Activation functions serve two primary purposes: 1) Help a model account for interaction effects.
What is an interactive effect? It is when one variable A affects a prediction differently depending on
the value of B. For example, if my model wanted to know whether a certain body weight indicated
an increased risk of diabetes, it would have to know an individual's height. Some bodyweights
indicate elevated risks for short people, while indicating good health for tall people. So, the effect of

n

body weight on diabetes risk depends on height, and we would say that weight and height have an
interaction effect.

2) Help a model account for non-linear effects. This just means that if | graph a variable on the
horizontal axis, and my predictions on the vertical axis, it isn't a straight line. Or said another way, the
effect of increasing the predictor by one is different at different values of that predictor.

How ReL U captures Interactions and Non-Linearities

Interactions: Imagine a single node in a neural network model. For simplicity, assume it has two
inputs, called A and B. The weights from A and B into our node are 2 and 3 respectively. So the node
output is f(2A+3B)€@(2€+3€). We'll use the ReLLU function for our f. So, if 2A+3B2€+3€) is
positive, the output value of our node is also 2A+3B2€+3€. If 2A+3B2¢+3€) is negative, the
output value of our node is 0.

For concreteness, consider a case where A=1 and B=1. The output is 2A+3B2¢+3€, and if A
increases, then the output increases too. On the other hand, if B=-100 then the output is 0, and if A
increases moderately, the output remains 0. So A might increase our output, or it might not. It just
depends what the value of B is.

This is a simple case where the node captured an interaction. As you add more nodes and more layers,
the potential complexity of interactions only increases. But you should now see how the activation
function helped capture an interaction.

Non-linearities: A function is non-linear if the slope isn't constant. So, the ReLLU function is non-
linear around 0, but the slope is always either 0 (for negative values) or 1 (for positive values). That's
a very limited type of non-linearity.

But two facts about deep learning models allow us to create many different types of non-linearities
from how we combine ReL.U nodes.

First, most models include a bias term for each node. The bias term is just a constant number that is
determined during model training. For simplicity, consider a node with a single input called A, and a
bias. If the bias term takes a value of 7, then the node output is f(7+A). In this case, if Ais less than -
7, the output is 0 and the slope is 0. If A is greater than -7, then the node's output is 7+A, and the slope
is 1.

So the bias term allows us to move where the slope changes. So far, it still appears we can have only
two different slopes.

However, real models have many nodes. Each node (even within a single layer) can have a different
value for it's bias, so each node can change slope at different values for our input.

When we add the resulting functions back up, we get a combined function that changes slopes in
many places.

These models have the flexibility to produce non-linear functions and account for interactions well (if
that will giv better predictions). As we add more nodes in each layer (or more convolutions if we are
using a convolutional model) the model gets even greater ability to represent these interactions and
non-linearities.

Facilitating Gradient Descent

This section is more technical than those above it. If you find it difficult, remember that you can have
a lot of success using deep learning even without this technical background.

Historically, deep learning models started off with s-shaped curves (like the tanh function

N

y = tanhix)

1 1 1 1 1 1 1 1 1
T T T T T T T T T T o

021 04 Qe 08 10 12 14 1&g 18 20

below)

The tanh would seem to have a couple advantages. Even though it gets close to flat, it isn't
completely flat anywhere. So it's output always reflects changes in it's input, which we might
expect to be a good thing. Secondly, it is non-linear (or curved everywhere). Accounting for
non-linearities is one of the activation function's main purposes. So, we expect a non-linear
function to work well.

However researchers had great difficulty building models with many layers when using the
tanh function. It is relatively flat except for a very narrow range (that range being about -2 to
2). The derivative of the function is very small unless the input is in this narrow range, and
this flat derivative makes it difficult to improve the weights through gradient descent. This
problem gets worse as the model has more layers. This was called the vanishing gradient
problem.

The ReLU function has a derivative of 0 over half it's range (the negative numbers). For
positive inputs, the derivative is 1.

When training on a reasonable sized batch, there will usually be some data points giving
positive values to any given node. So the average derivative is rarely close to 0, which allows
gradient descent to keep progressing.

Alternatives

There are many similar alternatives which also work well. The Leaky ReLU is one of the
most well known. It is the same as ReL.U for positive numbers. But instead of being 0 for all
negative values, it has a constant slope (less than 1.).

That slope is a parameter the user sets when building the model, and it is frequently

called a€p. For example, if the user sets a=0.3€p=0.3, the activation function is f(x) =
max(0.3*x, X). This has the theoretical advantage that, by being influenced by x at all values,
it may be make more complete use of the information contained in x.

Their are other alternatives, but both practitioners and researchers have generally found
insufficient benefit to justify using anything other than ReLU.

softmax function:

What is the softmax function in tenser flow?

hdden

hicden ogits

X 7N | S
’:,’ vz |
.»l, a]
e A o
4 X ¥ 3 ;
-4
Softmax

That is, Softmax assigns decimal probabilities to each class in a multi-class problem. Those
decimal probabilities must add up to 1.0. This additional constraint helps training converge
more quickly than it otherwise would. Softmax is implemented through a neural network
layer just before the output layer.

A.G. & S.G. Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh

Value Added Course
Title: Deep Learning

Test Exercise:
1. When deep learning start?
2. Who is father of deep learning?
3. How many layers deep learning algorithms are constructed?
4. What is the subset of machine learning?
5. The deep learning first layer is called the __ ?
6. RNNs stands for ?
7. Which are the common use of RNNs?
8. CNN is mostly used when there is an?

9. Which neural network has only one hidden layer between the input and output?
10. Limitations of deep learning?

8.

9.

A.G. & S.G. Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh

Value Added Course
Title:Deep Learning -

1943
FRANK ROSENBLATT
3
Deep learning
Inner layer
Recurrent neural networks
Provide a caption for images
Unstructured data

Shallow neural network

10. Data labelling , obtain huge training datasets

Free Hand

FreeText
Deep Learning

A.G. & S.G. Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh

Department of Computer Science

Value Added Course
Title: Deep Learning

Marks List

Class: IIBsc(MSCS)

S. No Roll No. Name of the Student Marks
1 2155301 Krishnavarapu Dharanisri 0 (g(
2 2155302 Ghantasala Divyd O
3 2155303 Mopidevi Sri Lakshmi 0Q
4 2155304 Singavarapu Sai Sowmya l)
5 2155305 Arikatla Susanth od
6 2155306 Bathina Manoj Phanindra 09
7 2155307 Jampana Keerthi Priya O
8 2155308 Konatham Alekhya 09
9 2155309 Kondaraju Ajith Kumar 10
10 2155310 Nakka Anusha 0q
11 2155311 Akula Chakradhar O
12 2155312 Mohammad Khadeera begum oQ
- 13 2155313 Bandela Pavan Kumar DR
14 2155314 Jonna Jhansi Lakshmi OX
15 2155315 Kunapareddy Tulasi OX

Free Hand

Free Hand

FreeText
Deep Learning

Free Hand

FreeText
Computer Science

16
2155316 Peddiboyina Himasri)
17 2155317 B
, Katts Maga Sravani e
18 2155318 e
Valluri Shainy ok
19 2155319
Manikonda Karuna Sri R
20 2155320
! Padmanabhur Phani Supraja W
21 2155321
Kunapareddy Hema sri o9
22 2155322 .
Reddy Durgn Bhavani MR
I 2155323
B Dakku Maga Gireesha 1%
24 2155324
Merugu Maga Mounika o
35 | 2185325
Goriparthi Dedeepya | 08
26 2155326
Edupuganti Joshimani O&
a7 2155327
Camgisetty Yuva Kiran 0
R - }55328
| Veerla Sei Lakshmi A&
29 3155329 —
_ Mamidi Chaitanya [k
I 21935330
) Rachuri Bobhy ax
3 2155331
Peteli Pranceth K s [
i2 2155332 '
Molammad Abmr Akansad L
33 2155333
_ Gariparthi Harika ' -
X 2153334
Vinnakotn Dieepchi 12

l
D&/ S _Q_ -'.'r':l-:f A :": .I: I'*-u ’
SignRtane r =

- PRING) N
Siguatucs of HOD AG & SCTRIER G A Iege o

AR Scsenoe |Rubomn o) Yoy yifd

_——— -

TR T T T T TR TR TR R R R Ny

E S

‘

A.G. & S.G. Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh

Department of Computer Science

Value Added Course

Title: Deep Learning

Feed Back Form
. Is the programme interested to you (4/N0)
: o

. Have you attended all the session (Yes/No)

. Is the content of the program is adequate (@No)
Have the teacher covered the entire syllabus? (Yes/No)
Is the number of hours adequate? (Yes/No)
Do you have any suggestions for enhancing or reducing the (Yes/No)
number of weeks designed for the program?
On the whole, is the program useful in terms of enriching (Y es/No)
your knowledge?

Do you have any suggestions on the program? (Ye/s/N 0)

g, =y =0

A.G. & S.G. Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh

Value Added Course / Certificate Course - Attendance Register
——————==0uee/ Lerlilicate Lourse - Attendance Register

Class!Sectinn:ﬁP@gC (M2 CEBYear:S} Department of: Cocapudey Qeiewe Paper: Deep [Eﬂvﬂ?‘la Lecturer: “[eio, 8, pleds
::I Roll No Student Name 1123 |4 /5|6 |7 |8|9]10|l11 12 |13 | 14 | 15 | Total
1| 2155301 Krishnavarapu Dharanisri Rle (Plplp|plAlP[plPIP[P]RAle [P
2 [2155302 Ghantasala Divya plejele |PRlele]elAlp PlPIA|p
3 [2155303 Mopidevi Sri Lakshmi CielelelalplPlple[e[Al0 [P [p]ep
4 2155304 Singavarapu Sai Sowmya K AEN elelP(RlPlPIAlP PlPIP
5| 2155305 Arikatla Susanth PlRIelAaIP Al]l elalpe |p

6 | 2155306 Bathina Manoj Phanindra elelelelelele|Ple]elp plA pp
7 | 2155307 Jampana Keerthi Priya eleielelplalelelelelA PLAIP |p
8 | 2155308 Konatham Alekhya Pielelelnlelelelelelp PLPIAP

9 | 2155309 Kondaraju Ajith Kumar plejel el plelllelp|A PlAlRIP
10| 2155310 Nakka Anusha eielelrlelelple [alelelale PlA
11| 2155311 Akula Chakradhar Ple e lelale]alele]o AlPlp |[A|P
12| 2155312 Mohammad Khadeera begum plejeielejelAafp(alr|Ple]ale]p
13| 2155313 Bandela Pavan Kumar PIRIPIRID (PR IPIPIPIAIR[P[AlP
14| 2155314 Jonna Jhansi Lakshmi plellelplalelelaleplPep A 1P
15| 2155315 Kunapareddy Tulasi PlPlelpl& PlRIelelAalele [nlelp
16 | 2155316 Peddiboyina Himasri PR lelelele o plalele| @l alelpe

A.G. & 85.G. Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh

ClnsarSectinn:_ﬁ ‘iit[hﬂlll‘jfur: Department of: Duder Lereuse Paper: Peop | n{ﬂé Lecturer: “Tejy i+ (0 ol
. o Roll No Student Name 16 (17 |18 |19 (20| 21 |22 |23 |24 (25|26 |27 | 28 | 29 | 30 | Total
1 2155317 Kalta Naga Sravani (> ¢ Ple e |A gip Pla P P p el il
2 | 2185318 Valluri Shainy vle Ie elele | alplelelelale]ele
3 2153319 Manikondn Karuna Sri elPielele|PIPIlrR | P ¢lr|lAlD £
4 2155320 Padmanabhuni Phani Supraja Q e plelele [ATP gle|Plelelplp
g 2155321 Kunapareddy Hema sri Rle (P|PIA|P PlRIPIAlLIP InIp|A
g 2155322 Reddy Durga Bhavani elelPle|nlpe&|n p gl P EIR PP
7 2155323 Dokku Naga Gireesha elPIe [P ¢ p V8 P Pl a ? P gle|f
g 2155324 Nerusu Naga Mounika Cle(PIee e AlPIR(eIP [ple |P |8
9 | 215535 Goriparthi Dedespya eieleplplpinlelalelelr[Plele
10 2155326 Edupuganti Joshimani PP P PP ARG P P1pla
11 | 2155327 Gangisetty Yuva Kiran el lelelelelPlRlplplelelelelr
12 | 2145328 “Veerla Sri Lakshmi R(eIPIPlel [p elAalalp|plP|r (A
13 | 2155329 Mamidi Chaitanya clele (alg lelPlelalelelelAale]p
14 | 2155330 Rachuri Bobby plee(elelel? [AlelalPlalplale
15 | 2155331 Peteti Praneeth Kumar Olplele|p | ple lAleIelelele|f
16 | 2155332 Mohammad Abrar Ahamad pieeeleie|elaelelelr |Plnlp
17 | 2155333 5mﬁié?ﬁi {E g E ;)}1,’3 g [l f;) pp £ E E g ;::3
18 2155334 nn ¢ D
R wg‘&—%’ Plalele .—.4'?*:- .:Hi- B
Sig Signature of HOD- Signahpeafdecipal

AG 4 56 Siddhartha D¥gres Collage of
ArtalScience |Automomeous] Vuyyure

A.G. & S.G. Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh

Value Added Course / Certificate Course - Attendance Register
——————==0uee/ Lerlilicate Lourse - Attendance Register

Class!Sectinn:ﬁP@gC (M2 CEBYear:S} Department of: Cocapudey Qeiewe Paper: Deep [Eﬂvﬂ?‘la Lecturer: “[eio, 8, pleds
::I Roll No Student Name 1123 |4 /5|6 |7 |8|9]10|l11 12 |13 | 14 | 15 | Total
1| 2155301 Krishnavarapu Dharanisri Rle (Plplp|plAlP[plPIP[P]RAle [P
2 [2155302 Ghantasala Divya plejele |PRlele]elAlp PlPIA|p
3 [2155303 Mopidevi Sri Lakshmi CielelelalplPlple[e[Al0 [P [p]ep
4 2155304 Singavarapu Sai Sowmya K AEN elelP(RlPlPIAlP PlPIP
5| 2155305 Arikatla Susanth PlRIelAaIP Al]l elalpe |p

6 | 2155306 Bathina Manoj Phanindra elelelelelele|Ple]elp plA pp
7 | 2155307 Jampana Keerthi Priya eleielelplalelelelelA PLAIP |p
8 | 2155308 Konatham Alekhya Pielelelnlelelelelelp PLPIAP

9 | 2155309 Kondaraju Ajith Kumar plejel el plelllelp|A PlAlRIP
10| 2155310 Nakka Anusha eielelrlelelple [alelelale PlA
11| 2155311 Akula Chakradhar Ple e lelale]alele]o AlPlp |[A|P
12| 2155312 Mohammad Khadeera begum plejeielejelAafp(alr|Ple]ale]p
13| 2155313 Bandela Pavan Kumar PIRIPIRID (PR IPIPIPIAIR[P[AlP
14| 2155314 Jonna Jhansi Lakshmi plellelplalelelaleplPep A 1P
15| 2155315 Kunapareddy Tulasi PlPlelpl& PlRIelelAalele [nlelp
16 | 2155316 Peddiboyina Himasri PR lelelele o plalele| @l alelpe

q Value Added Course [Certificate Course - Attendance Register
Class / Section: f| £.5¢ (M8 ear: Department of: Cpw dudey Scieuce Paper: Beop laeraing

AL & 5.6, Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh

3 L&ct‘urer"ﬁi_h ‘_I"f‘ﬁ&ﬁl‘
5l. fia Roll No Student Name 16 |17 | 18 |19 (20 |21 (22|23 |24 |25(26 |27 |28 |29 |30 | Total
1 | 2155317 Katta Naga Sravani pleeielplAlplelelalelel plplp
2 | 2155318 Valluri Shainy v [elelelp[Aalplelelenld ele
3 2155319 Manikonda Karuna Sri IR e |e]|p i] { A P P ﬂ pl g
4 2155320 Padmanabhuni Phani Supraja el elelele [AlPlalelplelplp 8]
5 2155321 Kunapareddy Hema sri Rle PIPIAIRIP|OIP A el nlP|A
6 | 2158312 Reddy Durga Bhavani el Pleinp dnPISPlpmlplp
7 2155323 Dokku Naga Gireesha elewe (p e lp [\ PlPIla {j - P e P
8 2155324 Nerusu Naga Mounika Cle|PIP e (p AIPIRIDI(IP ple (P |P
g | 2133325 Goriparthi Dedeepya viPleelelplpnielelerlelrlPlele
10 2155326 Edupuganti Joshimani P f .p e |p ale | elplAale P Plpla
11 2155327 Gangisetty Yuva Kiran e lelelplPlPlRPlAalR]lplP e
12 2155328 “Veerla Sri Lakshmi Y|P P P gl lPle|lAlald D P_ P 1A
13 2155329 Mamidi Chaitanya clele [a {) P p PlAIP P FlA P F}
14 | 2155330 Rachuri Bobby plelelelele P |Alelal?lalelale
15 | 2155331 Feteti Praneeth Kumer Plplele(ele]ple | ale Clelplp|f
16 | 2155332 Mohammad Abrar Ahamad eieeellielelalglelele [PInlp
17 | 2155333 Goriparthi Harika CIPIPIROIPIE]R P P ELLIP| £lA
18 | 2155334 /", . Vinnakota Deepthi M| P ;J:: PlPlelAlele p PLAIQA|l P
Sig Sigrtare of HDfE:

%Wﬁ

	Why is deep learning important?
	What are the uses of deep learning?
	Speech recognition
	Natural language processing
	Recommendation engines
	Clone python installation to local directory
	Activate clone environment
	Install package
	Test python package
	Install your own python modules

	Keras Installation and Environment Setup:
	Keras Installation and Environment setup
	Step 1: Install Python
	Step 2: Now, Open the Command Prompt
	Step 3: Now, type ‘pip’ in Command Prompt
	Step 4: Write ‘pip install tensorflow==1.8’ in Command Prompt
	Step 5: Write ‘pip install keras’ on Command Prompt

	Conclusion
	Amazon SageMaker
	AWS Deep Learning AMI
	AWS Deep Learning Containers
	Amazon EC2 Inf1 instances/ AWS Inferentia
	Amazon Elastic Inference
	Why are neural networks important?
	Make generalizations and inferences

	What is a neural network?
	How does a neural network learn?
	Neural network visualization

	1. Sigmoid (Logistic)
	Problems with Sigmoid activation function
	How to use it with Keras and TensorFlow 2

	2. Hyperbolic Tangent (Tanh)
	Problems with Tanh activation function
	How to use Tanh with Keras and TensorFlow 2

	3. Rectified Linear Unit (ReLU)
	Problem with ReLU
	How to use it with Keras and TensorFlow 2

	4. Leaky ReLU
	How to use Leaky ReLU with Keras and TensorFlow 2

	5. Parametric leaky ReLU (PReLU)
	How to use PReLU with Keras and TensorFlow 2

	6. Exponential Linear Unit (ELU)
	Problem with ELU
	How to use it with Keras and TensorFlow 2

	7. Scaled Exponential Linear Unit (SELU)
	Why It Works
	Introducing Interactions and Non-linearities

	Alternatives

