

A.G. & S.G. Siddhartha Degree College of Arts & Science

Vuyyuru-521165, Krishna District, Andhra Pradesh

(Managed by: Siddhartha Academy of General & Technical Education,

Vijayawada-10)

An Autonomous College in the Jurisdiction of Krishna University

Accredited by NAAC with “A” Grade ISO 9001:2015 Certified Institution

DEPARTMENT OF COMPUTER SCIENCE

Value Added Course

Title: Deep Learning

Name of the Lecturer : Teja Sri. Oleti

Class : II MSCS

Duration of the Course : 30 HOURS

VAC Code : DLVAC01

A.G. & S.G. Siddhartha Degree College of Arts & Science

Vuyyuru-521165, Krishna District, Andhra Pradesh

Value Added Course

Title: Deep Learning

Objectives: 1) Deep learning eliminates some of data

 Pre-processing that is typically involved

 With machine learning.

 2) Discuss the terminology used

 3) These algorithms can be ingest and process

 Unstructured data like text and images

Methodology: Teacher - Cantered method

Duration: 30 Hours

A.G. & S.G. Siddhartha Degree College of Arts & Science

Vuyyuru-521165, Krishna District, Andhra Pradesh

Value Added Course

Title: Deep Learning

Date : From to

Date Content Module No.

15-03-2023

Deep learning environment

over view of deep learning , deep learning

environment setup locally – installing tensor flow ,

installing keras , run tensor flow program on aws

cloud platform

I

29-03-2023

Introduction to neural network

What is neural network , how neural networks work ,

gradient descent , perceptron , multilayer perceptron ,

back propagation

II

5-04-2023

Tensor flow basics

Placeholders in tensor flow-defining placeholders ,

feeding placeholders with data , variables , constants ,

computation graph

III

19-04-2023

Activation functions

What are the activation functions , sigmoid functions ,

hyperbolic tangent function , Relu- rectified linear

units , softmax function

IV

DEEP LEARNING

Deep learning environment:

Over view of deep learning:
What is the overview of deep learning?

Deep learning is a subfield of machine learning that deals with algorithms inspired by the

structure and function of the brain. Deep learning is a subset of machine learning, which is a

part of artificial intelligence (AI). Artificial intelligence is the ability of a machine to imitate

intelligent human behaviour.

Why is deep learning important?

Artificial intelligence (AI) attempts to train computers to think and learn as humans do. Deep

learning technology drives many AI applications used in everyday products, such as the

following:

 Digital assistants

 Voice-activated television remotes

 Fraud detection

 Automatic facial recognition

It is also a critical component of emerging technologies such as self-driving cars, virtual reality,

and more.

Deep learning models are computer files that data scientists have trained to perform tasks using an

algorithm or a predefined set of steps. Businesses use deep learning models to analyze data and

make predictions in various applications.

What are the uses of deep learning?

Deep learning has several use cases in automotive, aerospace, manufacturing, electronics,

medical research, and other fields. These are some examples of deep learning:

 Self-driving cars use deep learning models to automatically detect road signs and pedestrians.

 Defence systems use deep learning to automatically flag areas of interest in satellite images.

 Medical image analysis uses deep learning to automatically detect cancer cells for medical

diagnosis.

 Factories use deep learning applications to automatically detect when people or objects are

within an unsafe distance of machines.

You can group these various use cases of deep learning into four broad categories—computer

vision, speech recognition, natural language processing (NLP), and recommendation engines.

Computer vision

Computer vision is the computer's ability to extract information and insights from images and

videos. Computers can use deep learning techniques to comprehend images in the same way that

humans do. Computer vision has several applications, such as the following:

 Content moderation to automatically remove unsafe or inappropriate content from image

and video archives

 Facial recognition to identify faces and recognize attributes like open eyes, glasses, and

facial hair

 Image classification to identify brand logos, clothing, safety gear, and other image details

Speech recognition

Deep learning models can analyze human speech despite varying speech patterns, pitch, tone,

language, and accent. Virtual assistants such as Amazon Alexa and automatic transcription

software use speech recognition to do the following tasks:

 Assist call center agents and automatically classify calls.

 Convert clinical conversations into documentation in real time.

 Accurately subtitle videos and meeting recordings for a wider content reach.

Natural language processing

Computers use deep learning algorithms to gather insights and meaning from text data and

documents. This ability to process natural, human-created text has several use cases, including

in these functions:

 Automated virtual agents and chatbots

 Automatic summarization of documents or news articles

 Business intelligence analysis of long-form documents, such as emails and forms

 Indexing of key phrases that indicate sentiment, such as positive and negative comments on

social media

Recommendation engines

Applications can use deep learning methods to track user activity and develop personalized

recommendations. They can analyze the behavior of various users and help them discover new

products or services. For example, many media and entertainment companies, such as Netflix,

Fox, and Peacock, use deep learning to give personalized video recommendations.

Deep learning environment setup locally – installing tensorflow

HOWTO: Install Tensorflow locally:

This documentation describes how to install tensorflow package locally in your $HOME

space.

Load python module

module load python/3.6-conda5.2

Clone python installation to local directory

Three alternative create commands are listed. These cover the most common cases:

conda create -n local --clone="$PYTHON_HOME"

This will clone the entire python installation to ~/envs/local directory. The process will take

several minutes.

conda create -n local

This will create a local python installation without any packages. If you need a small number

of packages, you may choose this option.

https://aws.amazon.com/computer-vision/
https://aws.amazon.com/what-is/speech-to-text/
https://aws.amazon.com/what-is/speech-to-text/
https://aws.amazon.com/comprehend/
https://aws.amazon.com/mxnet/
https://aws.amazon.com/mxnet/
https://aws.amazon.com/media/

conda create -n local python={version} anaconda

If you like to install a specific version of python, you can specify it with "python" option. For

example, you can use "python=3.6" for version 3.6.

To verify that a clone has been created, use the command

conda info -e

For additional conda command documentation see https://conda.io/docs/commands.html

Activate clone environment

For the bash shell:

source activate local

On newer versions of Anaconda on the Owens cluster you may also need to perform the

removal of the following packages before trying to install your specific packages:

conda remove conda-build

conda remove conda-env

Install package

Install the latest version of tensorflow that is gpu compatible.

pip install tensorflow-gpu

If there are errors on this step you will need to resolve them before continuing.

Test python package

Now we will test tensorflow package by loading it in python and checking its location to

ensure we are using the correct version.

python -c "import tensorflow;print (tensorflow.__file__)"

Output:

$HOME/.conda/envs/local/lib/python2.7/site-packages/tensorflow/__init__.py

Remember, you will need to load the proper version of python before you go to use your

newly installed package. Packages are only installed to one version of python.

Install your own python modules

If the method using conda above is not working or if you prefer, you can consider installing

python modules from the source. Please read HOWTO: install your own python modules.

Keras Installation and Environment Setup:

Keras is one of the most popular Python libraries. It is having high demand these days as it is

straight-forward and simple. It is a high-level API that does not perform low-level

computations. Keras runs on the TensorFlow and Theano.

It is handy for Deep Learning and focuses on the idea of Models. Keras is an open-source

Python library. It is very easy and effortless to download. It is easily and freely available.

You can download Keras with no efforts.

Let us learn Keras installation in easy steps.

Keras Installation and Environment setup

Step 1: Install Python

It is the primary task to install Python in your system. Python is an open-source language. It

is easily available. Download Python now.

https://conda.io/docs/commands.html
https://www.osc.edu/resources/getting_started/howto/howto_install_your_own_python_modules
https://www.python.org/downloads/windows/

Click on Latest Python 3 Release – Python 3.8.2. This link will help you to download the

latest version of Python.

Step 2: Now, Open the Command Prompt

In this step, open the command prompt. Run the command prompt as an administrator.

Running the command prompt as an administrator will enable you to make changes in your

system. It will ask you permission to make changes to your system. So, give it permission by

pressing the ‘Yes’ button.

Step 3: Now, type ‘pip’ in Command Prompt

Type ‘pip’ as a command in the command prompt. It will help you to check whether Python

is installed or not.

https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2020/09/Screenshot-35711.png
https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2020/09/Screenshot-35811.png

After typing ‘pip’ in the command prompt, you will see many functions executing. Wait, till

the functions execute.

Advertisement

Step 4: Write ‘pip install tensorflow==1.8’ in Command Prompt

Being the fact that Keras runs on the top of Keras. You need to install TensorFlow first.

https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2020/09/Screenshot-35111.png
https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2020/09/Screenshot-35211.png

After typing this command, you will see many functions executing. Tensorboard,

termcolor, numpy, wheel, etc are the functions that will be executed. You can many

commands and functions executing in the image below.

Step 5: Write ‘pip install keras’ on Command Prompt

Now, it’s time to finally install Keras. After writing ‘pip install keras’, you will see prompt

collecting many files.

https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2020/09/Screenshot-35311.png
https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2020/09/Screenshot-359.png

You will see that it is automatically ignoring the functions are that not much necessary. It is

very easy to install Keras. It will automatically install all the secondary files it needs.

After writing this command, wait for it to execute completely. Once it is done, you have

successfully installed Keras. Now, you can easily work with the Keras code. Write the Keras

commands easily and safely. Enjoy working with Keras.

Conclusion

This is how Keras installation is done. Keras is an open-source Python library. It is easy to

install Keras. As Keras runs on the top of TensorFlow, Theano. You have to install any of

these libraries first.

Here, you can see TensorFlow. After installing TensorFlow, you can install Keras. It is not a

burden to install Keras. It is not too time-consuming. You can easily and quickly install it.

Run tensor flow program on aws cloud plateform:

Getting Started with TensorFlow on AWS

PAGE CONTENT

Amazon SageMakerAWS Deep Learning AMIAWS Deep Learning ContainersAmazon EC2

inf1 instances/ AWS InferentiaAmazon Elastic Inference

Amazon SageMaker

The easiest way to get started with TensorFlow on AWS is using Amazon SageMaker, a fully

managed service that provides every developer and data scientist with the ability to build,

train, and deploy TensorFlow models quickly. SageMaker assists with each step of the

machine learning process to make it easier to develop high quality models. Data scientists can

also use SageMaker with TensorBoard to save development time by visualizing the model

architecture to identify and remediate convergence issues, such as validation loss not

converging or vanishing gradients. To get started with TensorFlow and TensorBoard on

SageMaker, use the following resources:

 Use TensorFlow with SageMaker documentation

 SageMaker with TensorBoard documentation

 PyTorch in the SageMaker Python SDK

 SageMaker TensorFlow container

 SageMaker TensorFlow serving container

 TensorFlow in SageMaker Workshop

https://aws.amazon.com/tensorflow/getting-started/#Amazon_SageMaker
https://aws.amazon.com/tensorflow/getting-started/#Amazon_SageMaker
https://aws.amazon.com/tensorflow/getting-started/#AWS_Deep_Learning_Containers
https://aws.amazon.com/tensorflow/getting-started/#AWS_Deep_Learning_Containers
https://aws.amazon.com/tensorflow/getting-started/#Amazon_EC2_Inf1_instances.2F_AWS_Inferentia
https://aws.amazon.com/tensorflow/getting-started/#Amazon_EC2_Inf1_instances.2F_AWS_Inferentia
https://docs.aws.amazon.com/sagemaker/latest/dg/tf.html
http://dev-dsk-cmiyoung-2a-c844f850.us-west-2.amazon.com/sagemaker/AWSIronmanApiDoc/integ/cmiyoung-tornasole/latest/dg/tensorboard-on-sagemaker.html
https://sagemaker.readthedocs.io/en/stable/index.html#pytorch
https://github.com/aws/sagemaker-tensorflow-training-toolkit
https://github.com/aws/sagemaker-tensorflow-serving-container
https://github.com/aws-samples/TensorFlow-in-SageMaker-workshop
https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2020/09/Screenshot-35511.png

 Extending containers

AWS Deep Learning AMI

AWS Deep Learning AMIs are machine images pre-installed with TensorFlow, allowing you to

quickly experiment with new algorithms or learn new skills and techniques. To get started, see

the TensorFlow on AWS Deep Learning AMIs tutorials below.

 TensorFlow

 TensorFlow 2

 TensorFlow with Horovod

 TensorFlow 2 with Horovod

AWS Deep Learning Containers

AWS Deep Learning Containers are Docker images pre-installed with TensorFlow to make it

easy to deploy custom machine learning environments quickly by letting you skip the

complicated process of building and optimizing your environments from scratch. To get started

with TensorFlow on AWS DL Containers, use the following resources:

 TensorFlow on Amazon EC2: Training | Inference

 TensorFlow on Amazon ECS: Training | Inference

 TensorFlow on Amazon EKS: Training | Distributed Training | CPU Inference | GPU

Inference

Amazon EC2 Inf1 instances/ AWS Inferentia

Amazon EC2 Inf1 instances are built from the ground up to support machine learning inference

applications. Inf1 instances feature up to 16 AWS Inferentia chips, high-performance machine

learning inference chips designed and built by AWS. Inf1 instances deliver up to 3x higher

throughput and up to 40% lower cost per inference than Amazon EC2 G4 instances, which were

already the lowest cost instance for machine learning inference available in the cloud. Using

Inf1 instances, you can run large scale machine learning inference with TensorFlow models at

the lowest cost in the cloud. To get started, see our tutorial on running TensorFlow models on

Inf1.

Amazon Elastic Inference

Amazon Elastic Inference allows you to attach low-cost GPU-powered acceleration to Amazon

EC2 and SageMaker instances or Amazon ECS tasks, to reduce the cost of running inference

with PyTorch models by up to 75%. To get started with TensorFlow on Elastic Inference, see

the following resources.

UNIT-II

Introduction to neural network

What is neural network:

A neural network is a method in artificial intelligence that teaches computers to process data in

a way that is inspired by the human brain. It is a type of machine learning process, called deep

learning, that uses interconnected nodes or neurons in a layered structure that resembles the

human brain. It creates an adaptive system that computers use to learn from their mistakes and

improve continuously. Thus, artificial neural networks attempt to solve complicated problems,

like summarizing documents or recognizing faces, with greater accuracy.

Why are neural networks important?

Neural networks can help computers make intelligent decisions with limited human assistance.

This is because they can learn and model the relationships between input and output data that are

nonlinear and complex. For instance, they can do the following tasks.

Make generalizations and inferences

Neural networks can comprehend unstructured data and make general observations without

explicit training. For instance, they can recognize that two different input sentences have a

similar meaning:

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/tensorflow_bring_your_own
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-tensorflow.html
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-tensorflow-2.html
https://docs.aws.amazon.com/dlami/latest/devguide/activate-horovod.html
https://docs.aws.amazon.com/dlami/latest/devguide/activate-horovod-2.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-ec2-tutorials-training.html#deep-learning-containers-ec2-tutorials-training-tf
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-ec2-tutorials-inference.html#deep-learning-containers-ec2-tutorials-inference-tf
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-ecs-tutorials-training.html#deep-learning-containers-ecs-tutorials-training-tf
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-ecs-tutorials-inference.html#deep-learning-containers-ecs-tutorials-inference-tf
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-eks-tutorials-gpu-training.html#deep-learning-containers-eks-tutorials-gpu-training-tf
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-eks-tutorials-distributed-gpu-training.html#deep-learning-containers-eks-tutorials-distributed-gpu-training-tf
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-eks-tutorials-cpu-inference.html#deep-learning-containers-eks-tutorials-cpu-inference-tf
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-eks-tutorials-gpu-inference.html#deep-learning-containers-eks-tutorials-gpu-inference-tf
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-eks-tutorials-gpu-inference.html#deep-learning-containers-eks-tutorials-gpu-inference-tf
https://aws.amazon.com/machine-learning/inferentia/
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-inferentia-tf-neuron.html
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-inferentia-tf-neuron.html

 Can you tell me how to make the payment?

 How do I transfer money?

A neural network would know that both sentences mean the same thing. Or it would be able

to broadly recognize that Baxter Road is a place, but Baxter Smith is a person’s name.

How neural networks work:

What is a neural network?

Simply said, a neural network is a set of algorithms designed to recognize patterns or

relationships in a given dataset. These deep neural networks are basically computing systems

designed to mimic how the human brain analyzes and processes information.

A neural network consists of neurons interconnected like a web and these neurons are

mathematical functions or models that do the computations required for classification according

to a given set of rules. Through this tutorial, let’s discuss how these artificial neural networks

work and their real-world usage.

How does a neural network learn?

Before moving on to learn how exactly the neural network works, you need to know what forms

a neural network. A normal neural network consists of multiple layers called the input layer,

output layer, and hidden layers. In each layer every node (neuron) is connected to all nodes

(neurons) in the next layer with parameters called ‘weights’. .

Neural networks consist of nodes called perceptrons that do necessary calculations and detect

features of neural networks. These perceptrons try to reduce the final cost error by adjusting the

weights parameters. Moreover, a perceptron can be considered as a neural network with a single

layer.

On the other hand, multilayer perceptrons are called deep neural networks. The perceptrons are

activated when there is satisfiable input. Go through this wiki article if you need to learn more

about perceptrons.

Now let’s move on to discuss the exact steps of a working neural network.

1. Initially, the dataset should be fed into the input layer which will then flow to the

hidden layer.

2. The connections which exist between the two layers randomly assign weights to the

input.

3. A bias is added to each input. Bias is a constant which is used in the model to fit best

for the given data.

4. The weighted sum of all the inputs will be sent to a function that is used to decide the

active status of a neuron by calculating the weighted sum and adding the bias. This

function is called the activation function.

5. The nodes that are required to fire for feature extraction are decided based on the

output value of the activation function.

6. The final output of the network is then compared to the required labeled data of our

dataset to calculate the final cost error. The cost error is actually telling us how ‘bad’

our network is. Hence we want the error to be as smallest as we can.

7. The weights are adjusted through back propagation, which reduces the error. This

back propagation process can be considered as the central mechanism that neural

networks learn. It basically fine-tunes the weights of the deep neural network in order

to reduce the cost value.

In simple terms, what we do when training a neural network is usually calculating the loss

(error value) of the model and checking if it is reduced or not. If the error is higher than the

expected value, we have to update the model parameters, such as weights and bias values. We

can use the model once the loss is lower than the expected error margin.

Neural network visualization

https://en.wikipedia.org/wiki/Perceptron

Neural networks can be described easily using the above diagram. The light blue circles

represent the perceptrons we discussed earlier, and the lines represent connections between

artificial neurons.

When considering one perceptron, its job can be visualized as follows.

When you input the data with random weights to the model, it generates the weighted sum of

them. According to that value, the activation function decides the activation status of the

neuron. The output of this perceptron may act as an input for the next neuron layer.

Gradient descent :

Gradient descent is an optimization algorithm which is commonly-used to train machine

learning models and neural networks. Training data helps these models learn over time, and

the cost function within gradient descent specifically acts as a barometer, gauging its

accuracy with each iteration of parameter updates. Until the function is close to or equal to

zero, the model will continue to adjust its parameters to yield the smallest possible error.

Once machine learning models are optimized for accuracy, they can be powerful tools for

artificial intelligence (AI) and computer science applications.

Perceptron:

A perceptron is the smallest element of a neural network. Perceptron is a single-layer neural

network linear or a Machine Learning algorithm used for supervised learning of various

binary classifiers. It works as an artificial neuron to perform computations by learning

elements and processing them for detecting the business intelligence and capabilities of the

input data. A perceptron network is a group of simple logical statements that come together to

create an array of complex logical statements, known as the neural network.

https://www.ibm.com/topics/machine-learning
https://www.ibm.com/topics/machine-learning
https://www.ibm.com/topics/neural-networks
https://www.analytixlabs.co.in/blog/fundamentals-of-neural-networks/
https://www.hotelmize.com/wp-content/uploads/2021/04/How-does-a-neural-network-works.png
https://www.hotelmize.com/wp-content/uploads/2021/04/perceptron.png

UNIT-3

Tensor flow basics:

Placeholders are Tensor-like objects. They are a contract between you and TensorFlow that

says when you run your computation graph in a session, you will supply or feed data into that

placeholder so that your graph can run successfully.

They are Tensor-like objects as they behave like Tensors, meaning you can pass them around

in places where you would put a Tensor.

By using placeholders, we can supply external inputs into our graph that might change each

time we run our graph. The natural use for them is as a way to supply data and labels into

our model as the data and labels we supply will generally be different each time we want to

run our graph.

When creating a placeholder, we must supply the datatype that will be fed.

We will use two placeholders to supply data and labels into our graph. We also supply the

shape that any data fed into these placeholders must take. We use None to indicate the size of

that particular dimension can take any value. This way we are able to feed in batches of data

that are varying sizes. Following we'll see how to define placeholders in TensorFlow for our

problem.

x = tf.placeholder(tf.float32, shape=[None, 4], name="data_in")

y = tf.placeholder(tf.int32, shape=[None, 3], name="target_labels")

Copy

Now, we have created placeholders in our graph, so we can construct our linear model on the

graph as well. We call our function that we defined previously, and supply as input our data

placeholder, x. Remember, placeholders act like Tensors so they can be passed around like

them as well. In the following code we call our linear_model function with our placeholder as

the input argument.

model_out = linear_model(x)

Copy

When we call our function, everything inside it executes and all the ops and variables are

added to our TensorFlow graph. We only need to do this once; if we were to try calling our

function again, we would get an error saying that we have tried to add variables to the graph

but they already exist.

Placeholders are the simplest and quickest way of supplying external data into our graph, so

it's good to know about them. Later on, we will see better ways of supplying data using the

dataset API, but for now placeholders are a good place to start.

Variables:

A TensorFlow variable is the recommended way to represent shared, persistent state your

program manipulates. This guide covers how to create, update, and manage instances

of tf.Variable in TensorFlow.

Variables are created and tracked via the tf.Variable class. A tf.Variable represents a tensor

whose value can be changed by running ops on it. Specific ops allow you to read and modify

the values of this tensor. Higher level libraries like tf.keras use tf.Variable to store model

parameters.

Constants:

A TensorFlow variable is the recommended way to represent shared, persistent state your

program manipulates. This guide covers how to create, update, and manage instances

of tf.Variable in TensorFlow.

Variables are created and tracked via the tf.Variable class. A tf.Variable represents a tensor

whose value can be changed by running ops on it. Specific ops allow you to read and modify

https://www.tensorflow.org/api_docs/python/tf/Variable
https://www.tensorflow.org/api_docs/python/tf/Variable
https://www.tensorflow.org/api_docs/python/tf/Variable
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/Variable
https://www.tensorflow.org/api_docs/python/tf/Variable
https://www.tensorflow.org/api_docs/python/tf/Variable
https://www.tensorflow.org/api_docs/python/tf/Variable

the values of this tensor. Higher level libraries like tf.keras use tf.Variable to store model

parameters.

UNIT-4

Activation functions:

What are the activation function:

The activation functions are at the very core of Deep Learning. They determine the output of a

model, its accuracy, and computational efficiency. In some cases, activation functions have a

major effect on the model’s ability to converge and the convergence speed.

In this article, you’ll learn the following most popular activation functions in Deep Learning

and how to use them with Keras and TensorFlow 2.

1. Sigmoid (Logistic)

2. Hyperbolic Tangent (Tanh)

3. Rectified Linear Unit (ReLU)

4. Leaky ReLU

5. Parametric Leaky ReLU (PReLU)

6. Exponential Linear Units (ELU)

7. Scaled Exponential Linear Unit (SELU)

1. Sigmoid (Logistic)

The Sigmoid function (also known as the Logistic function) is one of the most widely used

activation function. The function is defined as:

Sigmoid activation function (Image by author)

The plot of the function and its derivative.

the plot of Sigmoid function and its derivative (Image by author)

As we can see in the plot above,

 The function is a common S-shaped curve.

 The output of the function is cantered at 0.5 with a range from 0 to 1.

 The function is differentiable. That means we can find the slope of the sigmoid curve at

any two points.

 The function is monotonic but the function’s derivative is not.

The Sigmoid function was introduced to Artificial Neural Networks (ANN) in the 1990s to

replace the Step function [2]. It was a key change to ANN architecture because

https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/Variable

the Step function doesn’t have any gradient to work with Gradient Descent, while

the Sigmoid function has a well-defined nonzero derivative everywhere, allowing Gradient

Descent to make some progress at every step during training.

Problems with Sigmoid activation function

The main problems with the Sigmoid function are:

1. Vanishing gradient: looking at the function plot, you can see that when inputs become

small or large, the function saturates at 0 or 1, with a derivative extremely close to 0. Thus

it has almost no gradient to propagate back through the network, so there is almost nothing

left for lower layers [2].

2. Computationally expensive: the function has an exponential operation.

3. The output is not zero centered:

How to use it with Keras and TensorFlow 2

To use the Sigmoid activation function with Keras and TensorFlow 2, we can simply

pass 'sigmoid' to the argument activation :

from tensorflow.keras.layers import DenseDense(10, activation='sigmoid')

To apply the function for some constant inputs:

import tensorflow as tf

from tensorflow.keras.activations import sigmoidz = tf.constant([-20, -1, 0, 1.2], dtype=tf.float32)

output = sigmoid(z)

output.numpy()

2. Hyperbolic Tangent (Tanh)

Another very popular and widely used activation function is the Hyperbolic Tangent, also

known as Tanh. It is defined as:

tanh function (image by author)

The plot of the function and its derivative:

The plot of tanh and its derivative (image by author)

We can see that the function is very similar to the Sigmoid function.

 The function is a common S-shaped curve as well.

 The difference is that the output of Tanh is zero centered with a range from -

1 to 1 (instead of 0 to 1 in the case of the Sigmoid function)

 The same as the Sigmoid, this function is differentiable

 The same as the Sigmoid, the function is monotonic, but the function’s derivative is not.

Tanh has characteristics similar to Sigmoid that can work with Gradient Descent. One

important point to mention is that Tanh tends to make each layer’s output more or less

centered around 0 and this often helps speed up convergence [2].

Problems with Tanh activation function

Since Tanh has characteristics similar to Sigmoid, it also faces the following two problems:

1. Vanishing gradient: looking at the function plot, you can see that when inputs become

small or large, the function saturates at -1 or 1, with a derivative extremely close to 0.

Thus it has almost no gradient to propagate back through the network, so there is almost

nothing left for lower layers.

2. Computationally expensive: the function has an exponential operation.

How to use Tanh with Keras and TensorFlow 2

To use the Tanh, we can simply pass 'tanh' to the argument activation:

from tensorflow.keras.layers import DenseDense(10, activation='tanh')

To apply the function for some constant inputs:

import tensorflow as tf

from tensorflow.keras.activations import tanhz = tf.constant([-20, -1, 0, 1.2], dtype=tf.float32)

output = tanh(z)

output.numpy()

3. Rectified Linear Unit (ReLU)

The Rectified Linear Unit (ReLU) is the most commonly used activation function in deep

learning. The function returns 0 if the input is negative, but for any positive input, it returns

that value back. The function is defined as:

ReLU function (image by author)

The plot of the function and its derivative:

The plot of ReLU and its derivative

As we can see that:

 Graphically, the ReLU function is composed of two linear pieces to account for non-

linearities. A function is non-linear if the slope isn’t constant. So, the ReLU function is

non-linear around 0, but the slope is always either 0 (for negative inputs) or 1 (for positive

inputs).

 The ReLU function is continuous, but it is not differentiable because its derivative is 0

for any negative input.

 The output of ReLU does not have a maximum value (It is not saturated) and this helps

Gradient Descent

 The function is very fast to compute (Compare to Sigmoid and Tanh)

It’s surprising that such a simple function works very well in deep neural networks.

Problem with ReLU

ReLU works great in most applications, but it is not perfect. It suffers from a problem known

as the dying ReLU.

Dying ReLU

During training, some neurons effectively die, meaning they stop outputting anything other

than 0. In some cases, you may find that half of your network’s neurons are dead, especially if

you used a large learning rate. A neuron dies when its weights get tweaked in such a way that

the weighted sum of its inputs are negative for all instances in the training set. When this

happens, it just keeps outputting 0s, and gradient descent does not affect it anymore since the

gradient of the ReLU function is 0 when its input is negative.

How to use it with Keras and TensorFlow 2

To use ReLU with Keras and TensorFlow 2, just set activation='relu'

from tensorflow.keras.layers import DenseDense(10, activation='relu')

To apply the function for some constant inputs:

import tensorflow as tf

from tensorflow.keras.activations import reluz = tf.constant([-20, -1, 0, 1.2], dtype=tf.float32)

output = relu(z)

output.numpy()

4. Leaky ReLU

Leaky ReLU is an improvement over the ReLU activation function. It has all properties of

ReLU, plus it will never have dying ReLU problem. Leaky ReLU is defined as:

f(x) = max(αx, x)

The hyperparameter α defines how much the function leaks.

It is the slope of the function for x < 0 and is typically set to 0.01. The small slope ensures that

Leaky ReLU never dies.

How to use Leaky ReLU with Keras and TensorFlow 2

To use the Leaky ReLU activation function, you must create a LeakyReLU instance like

below:

from tensorflow.keras.layers import LeakyReLU, Denseleaky_relu = LeakyReLU(alpha=0.01)

Dense(10, activation=leaky_relu)

5. Parametric leaky ReLU (PReLU)

Parametric leaky ReLU (PReLU) is a variation of Leaky ReLU, where α is authorized to be

learned during training (instead of being a hyperparameter, it becomes a parameter that can be

modified by back propagation like any other parameters). This was reported to strongly

outperform ReLU on large image datasets, but on smaller datasets it runs the risk of over

fitting the training set [2].

How to use PReLU with Keras and TensorFlow 2

To use Parametric leaky ReLU, you must create a PReLU instance like below:

from tensorflow.keras.layers import PReLU, Densepara_relu = PReLU()

Dense(10, activation=para_relu)

6. Exponential Linear Unit (ELU)

Exponential Linear Unit (ELU) is a variation of ReLU with a better output for z < 0. The

function is defined as:

ELU function

The hyperparameter α controls the value to which an ELU saturates for negative net inputs.

The plot of the function and its derivative:

The plot of ELU and its derivative (image by author)

We can see in the plot above,

 ELU modified the slope of the negative part of the function.

 Unlike the Leaky ReLU and PReLU functions, instead of a straight line, ELU uses a log

curve for the negative values.

According to the authors, ELU outperformed all the ReLU variants in their experiments [3].

Problem with ELU

According to [2, 3], the main drawback of the ELU activation is that it is slower to compute

than the ReLU and its variants (due to the use of the exponential function), but during training

this is compensated by the faster convergence rate. However, at test time, an ELU network

will be slower than a ReLU network.

How to use it with Keras and TensorFlow 2

Implementing ELU in TensorFlow 2 is trivial, just specify the activation function when

building each layer:

Dense(10, activation='elu')

To apply the function for some constant inputs:

import tensorflow as tf

from tensorflow.keras.activations import eluz = tf.constant([-20, -1, 0, 1.2], dtype=tf.float32)

output = elu(z, alpha=1)

output.numpy()

7. Scaled Exponential Linear Unit (SELU)

Exponential Linear Unit (SELU) activation function is another variation of ReLU proposed

by Günter Klambauer et al. [4] in 2017. The authors showed that if you build a neural network

composed exclusively of a stack of dense layers, and if all hidden layers use

the SELU activation function, then the network will self-normalize (the output of each layer

will tend to preserve mean 0 and standard deviation 1 during training, which resolves the

vanishing/exploding gradients problem). This activation function often outperforms other

activation functions very significantly.

SELU is defined as:

f(x) = scale * x , z > 0

 = scale * α * (exp(x) - 1) , z <= 0

where α and scale are pre-defined constants (α=1.67326324 and scale=1.05070098).

The plot of SELU and its derivative:

sigmoid functions:

TensorFlow is open-source Python library designed by Google to develop Machine

Learning models and deep learning neural networks.

sigmoid() is used to find element wise sigmoid of x.

Syntax: tensorflow.math.sigmoid(x, name)

Parameters:
 x: It’s a tensor. Allowed dtypes are float16, float32, float64, complex64, or complex128.

 name(optional): It defines the name for the operation.

Return: It return a tensor of same dtype as x.

Example 1:

Python3

importing the library

import tensorflow as tf

Initializing the input tensor

a = tf.constant([.2, .5, .7, 1, 2, 5, 10], dtype = tf.float64)

Printing the input tensor

print('a: ', a)

Calculating result

res = tf.math.sigmoid(x = a)

Printing the result

print('Result: ', res)

Output:

a: tf.Tensor([0.2 0.5 0.7 1. 2. 5. 10.], shape=(7,), dtype=float64)

Result: tf.Tensor(

[0.549834 0.62245933 0.66818777 0.73105858 0.88079708 0.99330715

 0.9999546], shape=(7,), dtype=float64)

 Relu- rectified linear units:

Introduction

The Rectified Linear Unit is the most commonly used activation function in deep learning

models. The function returns 0 if it receives any negative input, but for any positive

value x� it returns that value back. So it can be written

as f(x)=max(0,x)�(�)=���(0,�).

Graphically it looks like this

It's surprising that such a simple function (and one composed of two linear pieces) can allow

your model to account for non-linearities and interactions so well. But the ReLU function

works great in most applications, and it is very widely used as a result.

Why It Works

Introducing Interactions and Non-linearities

Activation functions serve two primary purposes: 1) Help a model account for interaction effects.
What is an interactive effect? It is when one variable A affects a prediction differently depending on
the value of B. For example, if my model wanted to know whether a certain body weight indicated
an increased risk of diabetes, it would have to know an individual's height. Some bodyweights
indicate elevated risks for short people, while indicating good health for tall people. So, the effect of

body weight on diabetes risk depends on height, and we would say that weight and height have an

interaction effect.

2) Help a model account for non-linear effects. This just means that if I graph a variable on the

horizontal axis, and my predictions on the vertical axis, it isn't a straight line. Or said another way, the
effect of increasing the predictor by one is different at different values of that predictor.

How ReLU captures Interactions and Non-Linearities

Interactions: Imagine a single node in a neural network model. For simplicity, assume it has two

inputs, called A and B. The weights from A and B into our node are 2 and 3 respectively. So the node

output is f(2A+3B)�(2�+3�). We'll use the ReLU function for our f. So, if 2A+3B2�+3� is

positive, the output value of our node is also 2A+3B2�+3�. If 2A+3B2�+3� is negative, the

output value of our node is 0.

For concreteness, consider a case where A=1 and B=1. The output is 2A+3B2�+3�, and if A
increases, then the output increases too. On the other hand, if B=-100 then the output is 0, and if A

increases moderately, the output remains 0. So A might increase our output, or it might not. It just

depends what the value of B is.
This is a simple case where the node captured an interaction. As you add more nodes and more layers,

the potential complexity of interactions only increases. But you should now see how the activation

function helped capture an interaction.
Non-linearities: A function is non-linear if the slope isn't constant. So, the ReLU function is non-

linear around 0, but the slope is always either 0 (for negative values) or 1 (for positive values). That's

a very limited type of non-linearity.

But two facts about deep learning models allow us to create many different types of non-linearities
from how we combine ReLU nodes.

First, most models include a bias term for each node. The bias term is just a constant number that is

determined during model training. For simplicity, consider a node with a single input called A, and a
bias. If the bias term takes a value of 7, then the node output is f(7+A). In this case, if A is less than -

7, the output is 0 and the slope is 0. If A is greater than -7, then the node's output is 7+A, and the slope

is 1.
So the bias term allows us to move where the slope changes. So far, it still appears we can have only

two different slopes.

However, real models have many nodes. Each node (even within a single layer) can have a different

value for it's bias, so each node can change slope at different values for our input.
When we add the resulting functions back up, we get a combined function that changes slopes in

many places.

These models have the flexibility to produce non-linear functions and account for interactions well (if
that will giv better predictions). As we add more nodes in each layer (or more convolutions if we are

using a convolutional model) the model gets even greater ability to represent these interactions and

non-linearities.

Facilitating Gradient Descent
This section is more technical than those above it. If you find it difficult, remember that you can have

a lot of success using deep learning even without this technical background.
Historically, deep learning models started off with s-shaped curves (like the tanh function

below)

The tanh would seem to have a couple advantages. Even though it gets close to flat, it isn't

completely flat anywhere. So it's output always reflects changes in it's input, which we might

expect to be a good thing. Secondly, it is non-linear (or curved everywhere). Accounting for

non-linearities is one of the activation function's main purposes. So, we expect a non-linear

function to work well.

However researchers had great difficulty building models with many layers when using the

tanh function. It is relatively flat except for a very narrow range (that range being about -2 to

2). The derivative of the function is very small unless the input is in this narrow range, and

this flat derivative makes it difficult to improve the weights through gradient descent. This

problem gets worse as the model has more layers. This was called the vanishing gradient

problem.

The ReLU function has a derivative of 0 over half it's range (the negative numbers). For

positive inputs, the derivative is 1.

When training on a reasonable sized batch, there will usually be some data points giving

positive values to any given node. So the average derivative is rarely close to 0, which allows

gradient descent to keep progressing.

Alternatives

There are many similar alternatives which also work well. The Leaky ReLU is one of the

most well known. It is the same as ReLU for positive numbers. But instead of being 0 for all

negative values, it has a constant slope (less than 1.).

That slope is a parameter the user sets when building the model, and it is frequently

called α�. For example, if the user sets α=0.3�=0.3, the activation function is f(x) =

max(0.3*x, x). This has the theoretical advantage that, by being influenced by x at all values,

it may be make more complete use of the information contained in x.

Their are other alternatives, but both practitioners and researchers have generally found

insufficient benefit to justify using anything other than ReLU.

softmax function:

What is the softmax function in tenser flow?

That is, Softmax assigns decimal probabilities to each class in a multi-class problem. Those

decimal probabilities must add up to 1.0. This additional constraint helps training converge

more quickly than it otherwise would. Softmax is implemented through a neural network

layer just before the output layer.

A.G. & S.G. Siddhartha Degree College of Arts & Science

Vuyyuru-521165, Krishna District, Andhra Pradesh

Value Added Course

Title: Deep Learning

Test Exercise:

1. When deep learning start?

2. Who is father of deep learning?

3. How many layers deep learning algorithms are constructed?

4. What is the subset of machine learning?

5. The deep learning first layer is called the __?

6. RNNs stands for ?

7. Which are the common use of RNNs?

8. CNN is mostly used when there is an?

9. Which neural network has only one hidden layer between the input and output?

10. Limitations of deep learning?

A.G. & S.G. Siddhartha Degree College of Arts & Science

Vuyyuru-521165, Krishna District, Andhra Pradesh

Value Added Course

Title: Travel & Tourism

Key:

1. 1943

2. FRANK ROSENBLATT

3. 3

4. Deep learning

5. Inner layer

6. Recurrent neural networks

7. Provide a caption for images

8. Unstructured data

9. Shallow neural network

10. Data labelling , obtain huge training datasets

Free Hand

FreeText
Deep Learning

Free Hand

Free Hand

FreeText
Deep Learning

Free Hand

FreeText
Computer Science

	Why is deep learning important?
	What are the uses of deep learning?
	Speech recognition
	Natural language processing
	Recommendation engines
	Clone python installation to local directory
	Activate clone environment
	Install package
	Test python package
	Install your own python modules

	Keras Installation and Environment Setup:
	Keras Installation and Environment setup
	Step 1: Install Python
	Step 2: Now, Open the Command Prompt
	Step 3: Now, type ‘pip’ in Command Prompt
	Step 4: Write ‘pip install tensorflow==1.8’ in Command Prompt
	Step 5: Write ‘pip install keras’ on Command Prompt

	Conclusion
	Amazon SageMaker
	AWS Deep Learning AMI
	AWS Deep Learning Containers
	Amazon EC2 Inf1 instances/ AWS Inferentia
	Amazon Elastic Inference
	Why are neural networks important?
	Make generalizations and inferences

	What is a neural network?
	How does a neural network learn?
	Neural network visualization

	1. Sigmoid (Logistic)
	Problems with Sigmoid activation function
	How to use it with Keras and TensorFlow 2

	2. Hyperbolic Tangent (Tanh)
	Problems with Tanh activation function
	How to use Tanh with Keras and TensorFlow 2

	3. Rectified Linear Unit (ReLU)
	Problem with ReLU
	How to use it with Keras and TensorFlow 2

	4. Leaky ReLU
	How to use Leaky ReLU with Keras and TensorFlow 2

	5. Parametric leaky ReLU (PReLU)
	How to use PReLU with Keras and TensorFlow 2

	6. Exponential Linear Unit (ELU)
	Problem with ELU
	How to use it with Keras and TensorFlow 2

	7. Scaled Exponential Linear Unit (SELU)
	Why It Works
	Introducing Interactions and Non-linearities

	Alternatives

